Кодирование и реализация генетической информации. Проблемы понимания системы кодирования днк

Русские ученые выяснили, что ДНК скрывают закодированную информацию, присутствие которой заставляет считать человека биологическим компьютером, который состоит из сложных программ.

Загадочный текст в молекулах ДНК пытаются расшифровать специалисты из Института квантовой генетики. И их открытия все больше убеждают, что сначала было Слово, а мы есть порождение вакуумного Супермозга. Об этом рассказал президент ИКГ Петр Петрович Гаряев .

Совсем недавно ученые пришли к неожиданному открытию: молекула ДНК состоит не только из генов, отвечающих за синтез определенных белков, и генов, отвечающих за форму лица, уха, цвет глаз и т.д., но большей частью - из закодированных текстов.
Причем эти тексты занимают 95-99 процентов от всего содержания хромосом! (ПРИМЕЧАНИЕ: западные учёные считают это ненужной частью...как они говорят - это мусор ). И только 1-5 процентов занято пресловутыми генами, которые синтезируют белки.

Основная часть информации, содержащаяся в хромосомах, остается нам пока неизвестной. По мнению наших ученых, ДНК - это такой же текст, как текст книги. Но он обладает способностью быть читаемым не только буква за буквой и строчка за строчкой, но и с любой буквы, потому что там нет перерыва между словами. Читая этот текст с каждой последующей буквы, получают все новые и новые тексты. Можно читать и в обратную сторону, если ряд плоский. А если цепочка текста развернута в трехмерном пространстве, как в кубике, то текст читаем во всех направлениях.

Текст нестационарен, он постоянно движется, меняется, потому что наши хромосомы дышат, колышутся, порождая огромное количество текстов. Работа с лингвистами и математиками МГУ показала, что структура человеческой речи, книжного текста и структура последовательности ДНК математически близки, то есть это действительно тексты на неизвестных пока нам языках. Клетки разговаривают между собой, как мы с вами: генетический аппарат обладает бесконечным множеством языков.

Человек есть самочитаемая текстовая структура, клетки разговаривают между собой таким же способом, как люди между собой - делает вывод Петр Петрович Гаряев. Наши хромосомы реализуют программу строительства организма из яйцеклетки через биологические поля - фотонные и акустические. Внутри яйцеклетки создается электромагнитный образ будущего организма, записывается его социопрограмма, если хотите - Судьба.


Это еще одна неизученная особенность генетического аппарата, которая реализуется, в частности, с помощью одной из разновидностей биополя - лазерных полей, способных не только излучать свет , но и звук . Таким образом, генетический аппарат проявляет свои потенции через топографическую память.
В зависимости от того, каким светом освещены голограммы - а их множество, потому что на одной голограмме можно записать множество голограмм, - получается то или иное изображение. Причем прочесть его можно только тем же цветом, которым оно написано.
А наши хромосомы излучают широкий спектр, начиная от ультрафиолетового и кончая инфракрасным, и поэтому могут читать друг у друга множественные голограммы. В результате возникает световой и акустический образ будущего нового организма, а в прогрессии - все последующие поколения.

Программа, которая записана на ДНК, не могла возникнуть в результате дарвинской эволюции: чтобы записать такое огромное количество информации, требуется время, которое во много раз превышает время существования Вселенной.

Это все равно, что методом бросания кирпичей попытаться построить здание МГУ. Генетическую информацию можно передать на расстоянии, молекула ДНК может существовать в виде поля. Простой пример переноса генетического материала - проникновение в наш организм вирусов, таких, например, как вирус Эбола.

Этот принцип «непорочного зачатья» можно использовать для создания некоего устройства, позволяющего внедряться в человеческий организм и влиять на него изнутри.
«Мы разработали , - рассказывает Петр Петрович, - лазер на молекулах ДНК. Эта вещь потенциально грозная, как скальпель: им - можно лечить, а можно убить. Без преувеличения скажу, что это основа для создания психотропного оружия . Принцип работы такой.

В основе лазера лежат простые атомные структуры, а в основе молекул ДНК - тексты. Вы вводите в участок хромосомы определенный текст, и эти молекулы ДНК переводите в состояние лазера, то есть вы на них воздействуете так, что молекулы ДНК начинают светиться и издавать звук - разговаривать!
И в этот момент свет и звук могут проникнуть в другого человека и внедрить в него чужую генетическую программу. И человек меняется, он приобретает другие характеристики, начинает по-другому думать и действовать ».

*****

Генетический код, по-видимому, был изобретен за пределами Солнечной системы уже несколько миллиардов лет назад.

Это заявление поддерживает идею панспермии - гипотезу о том, что жизнь на Землю занесена с космических просторов. Это конечно, новый и смелый подход в завоевание галактик, если мы представим себе, что это был осознанный шаг инопланетных суперсуществ, умеющих оперировать генетическим материалом.

Исследователи предполагают, что на каком-то этапе наша ДНК была закодирована с инопланетным сигналом древней внеземной цивилизации. Как считают учёные, математический код, лежащий в человеческой ДНК, не может быть объяснён только лишь эволюцией.

Галактическая подпись человечества.

Удивительно, но оказывается, как только код был установлен, он будет сохраняться в неизменном виде на протяжении космических масштабов времени. Как поясняют исследователи, наша ДНК является самым долговечным «материалом” и именно поэтому код представляет собой исключительно надежную и обладающую интеллектуальными возможностями «подпись» для тех пришельцев, кто её будет читать, говорится об этом в журнале "Icarus".

Специалисты утверждают: «Записанный код может оставаться неизменным в течение космических масштабов времени, по сути, это самая надежная конструкция. Поэтому он представляет собой исключительно прочное хранилище для интеллектуальной подписи . Геном, будучи соответствующим образом переписан на новый код с подписью, будет находиться в замороженном состоянии в клетке и ее потомстве, которое затем можно пронести через пространство и время.”

Исследователи считают, что ДНК человека устроен таким точным образом, что раскрывает «набор арифметических и идеографических структур символического языка”. Работа ученых приводит их к мысли, что мы были буквально «созданы вне Земли” несколько миллиардов лет назад.

Универсальный язык Вселенной - живые космические коды

Эти идеи и убеждения не являются принятыми в научном сообществе. Однако эти исследования доказали то, о чем некоторые исследователи говорили в течение десятилетий, что эволюция не могла произойти сама по себе, и что есть что-то внеземное для всего нашего вида.

Однако основную тайну эти исследования и заявления не раскрывают. Тайну, которая остается в том виде как она сейчас есть; если внеземные существа действительно создали человечество и жизнь на планете Земля, тогда «кто» или «что” создал эти внеземные существа?


Стало быть, мы есть ПОСЛАНИЕ?
Человечеству определили роль SMS с видом на будущее...


Источник - http://oleg-bubnov.livejournal.com/233208.html
.

В генетическом коде записан разумный сигнал

Учёные обнаружили в генетическом коде целый ряд чисто математических и идеографических языковых конструкций, которые нельзя списать на случайность. Это можно интерпретировать только как разумный сигнал.

В 2013 году были опубликованы результаты исследования, авторы которого попробовали применить методику поиска сигнала от внеземного разумного источника (проект SETI) не к бескрайним просторам Вселенной... а к генетическому коду земных организмов.

«... Мы показываем, что земной код демонстрирует высокоточную упорядоченность, которая удовлетворяет критериям информационного сигнала. Простые структуры кода обнаруживают стройное целое из арифметических и идеографических конструкций одного и того же символического языка. Точные и систематичные, эти скрытые конструкции представляются как продукты точной логики и нетривиальных вычислений, а не результат стохастических процессов (нулевая гипотеза о том, что это - результат случая вместе с предполагаемыми эволюционными механизмами, отвергается со значением < 10-13). Конструкции настолько чётки, что кодовое отображение уникально выводится из своего алгебраического представления. Сигнал демонстрирует легко распознаваемые печати искусственности, среди которых символ нуля, привилегированный десятичный синтаксис и семантические симметрии. Кроме того, экстракция сигнала включает в себя логически прямолинейные, но вместе с тем абстрактные операции, что делает эти конструкции принципиально несводимыми к естественному происхождению. ...»

Таким образом, генетический код - это не только код, используемый для записи информации, необходимой для построения и функционирования живых организмов, но еще и некая "подпись”, вероятность случайного происхождения которой - менее 10-13. Это практически безальтернативно указывает на разумный источник создания генетического кода.

В любой клетке и организме все особенности анатомического, морфологического и функционального характера определяются структурой белков, которые входят в них. Наследственным свойством организма является способность к синтезу определенных белков. В аминокислоты расположены в полипептидной цепочке, от которой зависят биологические признаки.
Для каждой клетки характерна своя последовательность нуклеотидов в полинуклеотидной цепи ДНК. Это и есть генетический код ДНК. Посредством его записывается информация о синтезе тех или иных белков. О том, что такое генетический код, о его свойствах и генетической информации рассказывается в этой статье.

Немного истории

Идея о том, что, возможно, генетический код существует, была сформулирована Дж.Гамовым и А.Дауном в середине двадцатого столетия. Они описали, что последовательность нуклеотидов, отвечающая за синтез определенной аминокислоты, содержит по меньшей мере три звена. Позже доказали точное количество из трех нуклеотидов (это единица генетического кода), которое назвали триплет или кодон. Всего нуклеотидов насчитывается шестьдесят четыре, потому что молекулы кислот, где происходит или РНК, состоит из остатков четырех различных нуклеотидов.

Что такое генетический код

Способ кодирования последовательности белков аминокислот благодаря последовательности нуклеотидов характерен для всех живых клеток и организмов. Вот что такое генетический код.
В ДНК есть четыре нуклеотида:

  • аденин - А;
  • гуанин - Г;
  • цитозин - Ц;
  • тимин - Т.

Они обозначаются заглавными буквами латинскими или (в русскоязычной литературе) русскими.
В РНК также присутствуют четыре нуклеотида, однако один из них отличается от ДНК:

  • аденин - А;
  • гуанин - Г;
  • цитозин - Ц;
  • урацил - У.

Все нуклеотиды выстраиваются в цепочки, причем в ДНК получается двойная спираль, а в РНК — одинарная.
Белки строятся на где они, расположенные в определенной последовательности, определяют его биологические свойства.

Свойства генетического кода

Триплетность. Единица генетического кода состоит из трех букв, он триплетен. Это означает, что двадцать существующих аминокислот зашифрованы тремя определенными нуклеотидами, которые называются кодонами или трилпетами. Существуют шестьдесят четыре комбинации, которые можно создать из четырех нуклеотидов. Этого количества более чем достаточно для того, чтобы закодировать двадцать аминокислот.
Вырожденность. Каждая аминокислота соответствует более чем одному кодону, за исключением метионина и триптофана.
Однозначность. Один кодон шифрует одну аминокислоту. Например, в гене здорового человека с информацией о бета-цели гемоглобина триплет ГАГ и ГАА кодирует А у всех, кто болен серповидноклеточной анемией, один нуклеотид заменен.
Коллинеарность. Последовательность аминокислот всегда соответствует последовательности нуклеотидов, которую содержит ген.
Генетический код непрерывен и компактен, что означает то, что он не имеет «знаков препинания». То есть, начинаясь на определенном кодоне, идет непрерывное считывание. К примеру, АУГГУГЦУУААУГУГ будет считываться как: АУГ, ГУГ, ЦУУ, ААУ, ГУГ. Но никак не АУГ, УГГ и так далее или как-то еще иначе.
Универсальность. Он един абсолютно для всех земных организмов, от людей до рыб, грибов и бактерий.

Таблица

В представленной таблице присутствуют не все имеющиеся аминокислоты. Гидроксипролин, гидроксилизин, фосфосерин, иодопроизводных тирозина, цистин и некоторые другие отсутствуют, так как они являются производными других аминокислот, кодирующихся м-РНК и образующихся после модификации белков в результате трансляции.
Из свойств генетического кода известно, что один кодон способен кодировать одну аминокислоту. Исключением является выполняющий дополнительные функции и кодирующий валин и метионин, генетический код. ИРНК, находясь в начале с кодоном, присоединяет т-РНК, которая несет формилметион. По завершении синтеза он отщепляется сам и захватывает за собой формильный остаток, преобразуясь в остаток метионина. Так, вышеупомянутые кодоны являются инициаторами синтеза цепи полипептидов. Если же они находятся не в начале, то ничем не отличаются от других.

Генетическая информация

Под этим понятием подразумевается программа свойств, которая передается от предков. Она заложена в наследственности как генетический код.
Реализуется при синтезе белка генетический код :

  • информационной и-РНК;
  • рибосомальной р-РНК.

Информация передается прямой связью (ДНК-РНК-белок) и обратной (среда-белок-ДНК).
Организмы могут получать, сохранять, передавать ее и использовать при этом наиболее эффективно.
Передаваясь по наследству, информация определяет развитие того или иного организма. Но из-за взаимодействия с окружающей средой реакция последнего искажается, благодаря чему и происходит эволюция и развитие. Таким образом в организм закладывается новая информация.


Вычисление закономерностей молекулярной биологии и открытие генетического кода проиллюстрировали то, что необходимо соединить генетику с теорией Дарвина, на основе чего появилась синтетическая теория эволюции — неклассическая биология.
Наследственность, изменчивость и естественный отбор Дарвина дополняются генетически определяемым отбором. Эволюция реализуется на генетическом уровне путем случайных мутаций и наследованием самых ценных признаков, которые наиболее адаптированы к окружающей среде.

Расшифровка кода у человека

В девяностых годах был начат проект Human Genome, в результате чего в двухтысячных были открыты фрагменты генома, содержащие 99,99% генов человека. Неизвестными остались фрагменты, которые не участвуют в синтезе белков и не кодируются. Их роль пока остается неизвестной.

Последняя открытая в 2006 году хромосома 1 является самой длинной в геноме. Более трехсот пятидесяти заболеваний, в том числе рак, появляются в результате нарушений и мутаций в ней.

Роль подобных исследований трудно переоценить. Когда открыли, что такое генетический код, стало известно, по каким закономерностям происходит развитие, как формируется морфологическое строение, психика, предрасположенность к тем или иным заболеваниям, обмен веществ и пороки индивидов.

Генетическая информация закодирована в ДНК. Генетический код был выяснен М. Ниренбергом и Х.Г. Корана, за что они были удостоены Нобелевской премии в 1968 году.

Генетический код - система расположения нуклеотидов в молекулах нуклеиновых кислот, контролирующая последовательность расположения аминокислот в молекуле полипептида.

Основные постулаты кода :

1) Генетический код триплетен. Триплет и-РНК получил название кодона. Кодон шифрует одну аминокислоту.

2) Генетический код является вырожденным. Одна аминокислота шифруется, более чем один кодоном (от 2 до 6). Исключения составляют метиониновый и триптофановый (АУГ, ГУГ). В кодонах для одной аминокислоты первые два нуклеотида чаще всего одинаковы, а третий варьирует.

3) Кодоны не перекрываются. Нуклеотидная последовательность считывается в одном направлении подряд, триплет за триплетом.

4) Код однозначен. Кодон шифрует определенную аминокислоту.

5) АУГ является стартовым кодоном.

6) Внутри гена нет знаков препинания - стоп кодонов: УАГ, УАА, УГА.

7) Генетический код универсален, он един для всех организмов и вирусов.

Раскрытие структура ДНК, материального носителя наследственности способствовало решению многих вопросов: воспроизведение генов, природы мутаций, биосинтез белка и т.д.

Механизм передачи генетического кода способствовал развитию молекулярной биологии, а так же генной инженерии, генной терапии.

ДНК находится в ядре и входит в состав хроматина, а также митохондрии, центросомы, пластиды, а РНК - в ядрышках, матриксе цитоплазмы, рибосомах.

Носителем наследственной информации в клетке является ДНК, а РНК - служит для передачи и реализации генетической информации у про- и эукариот. С помощью и-РНК происходит процесс перевода последовательности нуклеотидов ДНК в полипептид.

У некоторых организмов, кроме ДНК, носителем наследственной информации может быть РНК, например, у вирусов табачной мозаики, полиомиелита, СПИДа.

Мономерами нуклеиновых кислот являются нуклеотиды. Установлено, что в хромосомах эукариот гигантская двуспиральная молекула ДНК образована 4 типами нуклеотидов: адениловый, гуаниловый, тимидиловый, цитозиловый. Каждый нуклеотид состоит из азотистого основания (пуринового Г+А или пиримидинового Ц+Т), дезоксирибозы и остатка фосфорной кислоты.

Анализируя ДНК разного происхождения, Чаргафф сформулировал закономерности количественного соотношения азотистых оснований - правила Чаргаффа.

а) количество аденина равно количеству тимина (А=Т);

б) количество гуанина равно количеству цитозина (Г=Ц);

в) количество пуринов равно количеству пиримидинов (Г+А = Ц+Т);

г) количество оснований с 6-аминогруппами равно количеству оснований с 6-кетогруппами (А+Ц = Г+Т).

В то же время соотношение оснований А+ТГ+Ц является строго видоспецифичным коэффициентом (для человека - 0,66; мыши - 0,81; бактерии - 0,41).

В 1953 году биологом Дж.Уотсоном и физиком Ф.Криком была предложена пространственная молекулярная модель ДНК.

Основные постулаты модели заключаются в следующем:

1. Каждая молекула ДНК состоит из двух длинных антипараллельных полинуклеотидных цепей, образующих двойную спираль, закрученную вокруг центральной оси (правозакрученная - В-форма, левозакрученная - Z-форма, обнаруженная А. Ричем в конце 70-х годов).

2. Каждый нуклеозид (пентоза + азотистое основание) расположен в плоскости, перпендикулярной оси спирали.

3. Две полинуклеотидные цепи скреплены водородными связями, образующимися между азотистыми основаниями.

4. Спаривание азотистых оснований строго специфично, пуриновые основания соединяются только с пиримидиновыми: А-Т, Г-Ц.

5. Последовательность оснований одной цепи может значительно варьировать, но азотистые основания другой цепи должны быть строго комплементарны им.

Полинуклеотидные цепи образуются за счет ковалентных связей между соседними нуклеотидами через остаток фосфорной кислоты, который соединяет углерод в пятом положении сахара с третьим углеродом соседнего нуклеотида. Цепи имеют направленность: начало цепи 3 " ОН - в третьем положении углерода дезоксирибозы присоединяется гидроксильная группа ОН, конец цепи - 5 " Ф, к пятому углероду дезоксирибозы присоединяется остаток фосфорной кислоты.

Аутосинтетической функцией ДНК является репликация - авторепродукции. Репликация основана на принципах полуконсервативности, антипараллельности, комплементарности и прерывистости. Наследственная информация ДНК реализуется в результате репликации по типу матричного синтеза. Он протекает в по стадиям: связывание, инициация, элонгация, терминация. Процесс приурочен к S-периоду интерфазы. Фермент ДНК-полимераза использует в качестве матрицы одноцепочечную ДНК и в присутствии 4-х нуклеотидов, затравки (РНК) строит вторую цепь ДНК.

Синтез ДНК осуществляется по принципу комплементарности. Между нуклеотидами цепи ДНК образуется фосфодиэфирные связи за счет соединений 3 " ОН группы самого последнего нуклеотида с 5 " -фосфатом следующего нуклеотида, который должен присоединиться к цепи.

Различают три основных вида репликации ДНК: консервативный, полуконсервативный, дисперсный.

Консервативный - сохранность целостности исходной двуцепочечной молекулы и синтез дочерней двуцепочной. Половина дочерних молекул построена полностью из нового материала, а половина - из старого материнского.

Полуконсервативный - Синтез ДНК начинается с присоединения к точке начала репликации фермента хеликазы, который расплетает участки ДНК. К каждой из цепей присоединяется ДНК связывающей белок (ДСБ), препятствующей их соединению. Единицей репликации является репликон - это участок между двумя точками начала синтеза дочерних цепей. Взаимодействие ферментов с точкой начала репликации называется инициацией. Эта точка движется вдоль цепи (3 " ОН>5 " Ф) и образуется репликативная вилка.

Синтез новой цепи идет прерывисто с образованием фрагментов длиной 700-800-2000 нуклеотидных остатков. Имеется точка начала и конца репликации. Репликон движется вдоль молекулы ДНК и расплетаются ее новые участки. Каждая из материнских цепей является матрицей для дочерней, которая синтезируется по принципу комплементарности. В результате последовательных соединений нуклеотидов цепь ДНК удлиняется (стадия элонгации) с помощью фермента ДНК-лигаза. При достижении нужной длины молекулы синтез прекращается - терминация. У эукариот работает сразу тысячи репликативных вилок. У прокариот - инициация происходит в одной точке кольца ДНК, при этом две репликативные вилки двигаются в 2-х направлениях. В месте их встречи двух цепочечные молекулы ДНК разъединяются.

Дисперсный - распад ДНК на нуклеотидные фрагменты, новая двуцепочечная ДНК состоит из спонтанно набранных новых и родительских фрагментов.

ДНК эукариот по структуре похоже на ДНК прокариот. Различия касаются: количества ДНК по генам, длиной молекулы ДНК, порядком чередования нуклеотидных последовательностей, формой укладки (у эукариот - линейная, у прокариот - кольцевая).

Для эукариот характерна избыточность ДНК: кол-во ее ДНК, участвующее в кодировании, составляет только 2%. Часть избыточной ДНК представлена одинаковыми наборами нуклеотидов, повторяющимися много раз (повторы). Различают многократно и умеренно повторяющиеся последовательности. Они образуют конститутивный гетерохроматин (структурный). Он встроен между уникальными последовательностями. Избыточные гены имеют 10 4 копий.

Метафазная хромосома (спирализованный хроматин) состоит из двух хроматид. Форма определяется наличием первичной перетяжки - центромеры. Она разделяет хромосому на 2 плеча.

Расположение центромеры определяет основные формы хромосом:

Метацентрические,

Субметацентрические,

Акроцентрические,

Телоцентрические.

Степень спирализации хромосом не одинакова. Участки хромосом со слабой спирализацией называют эухроматиновыми. Это зона высокой метаболической активности, где ДНК состоит из уникальных последовательностей. Зона с сильной спирализацией - гетерохроматиновый участок, способный к транскрипции. Различают конститутивный гетерохроматин-генетический инертный, не содержит генов, не переходит в эухроматин, а так же факультативный , который может переходить в активный эухроматин. Концевые отделы дистальных участков хромосом называют теломеры.

Хромосомы подразделяются на аутосомы (соматических клеток) и гетерохромосомы (половых клеток).

По предложению Левитского (1924) диплоидный набор соматических хромосом клетки был назван кариотипом. Он характеризуется числом, формой, размерами хромосом. Для описания хромосом кариотипа по предложению С.Г. Навашина их располагают в виде идиограммы - систематизированного кариотипа. В 1960 году была предложена Денверская международная классификация хромосом, где хромосомы классифицированы по величине и расположению центромеры. В кариотипе соматической клетки человека различают 22 пары аутосом и пару половых хромосом. Набор хромосом в соматических клетках называют диплоидным , а в половых клетках - гаплоидным (он равен половине набора аутосом). В идиограмме кариотипа человека хромосомы делят на 7 групп, в зависимости от их размеров и формы.

1 - 1-3 крупные метацентрические.

2 - 4-5 крупные субметацентрические.

3 - 6-12 и Х-хромосома средние метацентрические.

4 - 13-15 средние акроцентрические.

5 - 16-18 относительно малые мета-субметацентрические.

6 - 19-20 малые метацентрические.

7 - 21-22 и Y-хромосома наиболее малые акроцентрические.

Согласно Парижской классификации хромосомы разделены на группы по их размерам и форме, а также линейной дифференцировке.

Хромосомы обладают следующими свойствами (правила хромосом):

1. Индивидуальности - отличия негомологичных хромосом.

2. Парности.

3. Постоянством числа - характерным для каждого вида.

4. Непрерывности - способности к репродукции.

  • Билет №13
  • Типы мутаций:
  • Билет № 15
  • 1. Митотический цикл клетки. Характеристика периодов. Митоз, его биологическое значение. Проблемы клеточной пролиферации в медицине Клеточный цикл в опухолях.
  • 2. Цитологический метод диагностики хромосомных нарушении человека. Биохимический метод.
  • 3. Бычий цепень. Систематическое положение, морфология, цикл развития, лабораторная диагностика. Тениаринхоза.
  • 1. Методы изучения наследственности человека. Генеалогический и близнецовый методы, их значение для медицины.
  • 2. Вши, блохи. Систематическое положение, морфология, развитие, эпидемиологическое значение, методы борьбы.
  • 3. Предмет основы биологии человека и животных и его место среди других медико-биологических дисциплин для специалиста по медицинской аппаратуре.
  • Билет № 17
  • 1. Генотип как целое. Ядерная и цитоплазматическая наследственность.
  • 2. Понятие о виде. Реальность вида. Структура вида. Критерии вида.
  • 3. Пути преодоления тканевой несовместимости. Искусственные органы. Клонирование организмов: за и против.
  • Билет № 18
  • 1. Строение и функции днк. Механизм авторепродукции днк. Биологическое значение.
  • 2. Роль наследственности и среды в онтогенезе. Критические периоды развития. Тератогенные факторы среды.
  • Билет № 19
  • 1. Генетические механизмы определения пола. Дифференциация признаков пола в развитии. Факторы, влияющие на предопределение пола в онтогенезе.
  • 2. Биологические и социальные аспекты старения и смерти. Проблема долголетия. Понятие о геронтологии и гериатрии.
  • 3. Жизненный цикл плоских червей. Чередование хозяев и феномен смены хозяев. Промежуточные и основные хозяева. Понятие о биогельминтах, примеры.
  • 1. Наследование групп крови, системы аво и резус-фактора. Резус-конфликт.
  • 2. Рецепторы поверхностного аппарата клеток. Транспорт веществ через мембраны. Мембранный потенциал, градиент концентрации, диффузия, осмос.
  • 3. Жизненный цикл у круглых червей. Чередование хозяев и феномен смены
  • Билет 21.
  • 1. Качественные особенности живой материи. Принцип организации во времени и пространстве. Уровни организации живого.
  • 2. Множественные аллели и полигенное наследование на примере человека. Взаимодействие неаллельных генов: комплементарность, эпистаз.
  • 3. Членистоногие. Систематика, морфология, развитие. Значение для медицины как переносчиков возбудителя трансмиссивных природноочаговых заболеваний.
  • Билет 22 .
  • 1.Элементы крови, кровезаменители – искусственная кровь.
  • 2.Периодизация постэмбрионального развития. Период роста и формирования, влияние внешних факторов.
  • 3. Биосфера как естественноисторическая система. Современные концепции биосферы: биохимическая, биогеоценотическая, термодинамическая, геофизическая, кибернетическая, социально-экологическая.
  • Билет 23.
  • 1. Закон независимого комбинирования признаков. Цитогенетические основы универсальности законов Менделя. Менделирующие признаки человека.
  • 2. Биогеографическая характеристика условий обитания как фактора заражения паразитарными болезнями. Примеры. Средства профилактики.
  • 3. Популяционная структура человечества. Демы. Изоляты. Люди как объект действия эволюционных факторов.
  • Билет 24.
  • 2. Трихомонада. Систематика, морфология, цикл развития, пути заражения. Лабораторная диагностика и профилактика.
  • 3. Эволюция биосферы. Учение академика в.И. Вернадского.
  • Билет 25.
  • 2. Простейшие. Классификация. Характерные черты организации. Значение для медицины как возбудителей протозойных заболеваний.
  • 3. Внутренняя среда организма – гомеостаз. Состав и функции крови. Плазма, свертывание крови.
  • Билет 26.
  • 1. Классификация генов: гены структурного синтеза рнк, регуляторы. Свойства генов: дискретность, стабильность, лабильность, специфичность, плейотропия.
  • 2. Смерть как заключительный этап онтогенеза. Клиническая и биологическая смерть. Реанимация.
  • 3. Проблемы окружающей среды и пути их решения.
  • 1. Кодирование и реализация биологической информации в клетке. Кодовая система днк и белка.

    2. Генная инженерия. Биотехнология. Задачи, методы. Достижения, перспективы.

    3. Определение науки экологии. Среда как экологическое понятие, факторы среды. Экосистема, биогеоценоз, антропоценоз. Специфика среды жизни людей.

    1. Первично все многообразие жизни обусловливается разнообразием белковых молекул, выполняющих в клетках различные биологические функции. Структура белков определяется набором и порядком расположения аминокислот в их пептидных цепях. Именно эта последовательность аминокислот в пептидных цепях зашифрована в молекулах ДНК с помощью биологического (генетического) кода. Для шифровки 20 различных аминокислот достаточное количество сочетаний нуклеотидов может обеспечить лишь триплетный код, в котором каждая аминокислота шифруется тремя стоящими рядом нуклеотидами.

    Генетический код – это система записи информации о последовательности расположения аминокислот в белках с помощью последовательного расположения нуклеотидов в и-РНК.

    Св-ва ген. кода:

    1) Код триплетен. Это означает, что каждая из 20 аминокислот зашифрована последовательностью 3 нуклеотидов, называется триплетом или кодоном.

    2) Код вырожден. Это означает, что каждая аминокислота шифруется более чем одним кодоном (исключение метиотин и триптофан)

    3) Код однозначен – каждый кодон шифрует только 1 аминоксилоту

    4) Между генами имеются «знаки препинания» (УАА,УАГ,УГА) каждый из которых означает прекращение синтеза и стоит в конце каждого гена.

    5) Внутри гена нет знаков препинания.

    6) Код универсален. Генетический код един для всех живых на земле существ.

    Транскрипция – это процесс считывания информации РНК, осуществляемой и-РНК полимеразой. ДНК – носитель всей генетической информации в клетке, непосредственного участия в синтезе белков не принимает. К рибосомам – местам сборки белков – высылается из ядра несущий информационный посредник, способный пройти поры ядерной мембраны. Им является и-РНК. По принципу комплементарности она считывает с ДНК при участии фермента называемого РНК – полимеразой. В процессе транскрипции можно выделить 4 стадии:

    1) Связывание РНК-полимеразы с промотором,

    2) инициация – начало синтеза. Оно заключается в образовании первой фосфодиэфирной связи между АТФ и ГТФ и два нуклеотидом синтезирующей молекулы и-РНК,

    3) элонгация – рост цепи РНК, т.е. последовательное присоединение нуклеотидов друг к другу в том порядке, в котором стоят комплементарные нуклеотиды в транскрибируемой ните ДНК,

    4) Терминация – завершения синтеза и-РНК. Промотр – площадка для РНК-полимеразы. Оперон – часть одного гена ДНК.

    ДНК (дезоксирибонуклеиновая кислота) – биологический полимер, состоящий из двух полинуклеотидных цепей, соединенных друг с другом. Мономеры, составляющие каждую из цепей ДНК, представляют собой сложные органические соединения, включающие одно из четырех азотистых оснований: аденин (А) или тимин (Т), цитозин (Ц) или гуанин (Г), пятиатомный сахар пентозу – дезоксирибозу, по имени которой получила название и сама ДНК, а также остаток фосфорной кислоты. Эти соединения носят название нуклеотидов.

    2. ГЕННАЯ ИНЖЕНЕРИЯ, или технология рекомбинантных ДНК, изменение с помощью биохимических и генетических методик хромосомного материала – основного наследственного вещества клеток. Хромосомный материал состоит из дезоксирибонуклеиновой кислоты (ДНК). Биологи изолируют те или иные участки ДНК, соединяют их в новых комбинациях и переносят из одной клетки в другую. В результате удается осуществить такие изменения генома, которые естественным путем вряд ли могли бы возникнуть. Методом генной инженерии получен уже ряд препаратов, в том числе инсулин человека и противовирусный препарат интерферон. И хотя эта технология еще только разрабатывается, она сулит достижение огромных успехов и в медицине, и в сельском хозяйстве. В медицине, например, это весьма перспективный путь создания и производства вакцин. В сельском хозяйстве с помощью рекомбинантной ДНК могут быть получены сорта культурных растений, устойчивые к засухе, холоду, болезням, насекомым-вредителям и гербицидам.

    Методы генной инженерии:

    Метод секвенирования – определение нуклеотидной последовательности ДНК;

    Метод обратной транскрипции ДНК;

    Размножение отдельных фрагментов ДНК.

    Современная биотехнология - это новое научно-техническое направление, возникшее в 60-70-х годах нашего столетия. Особенно бурно она стала развиваться с середины 70-х годов после первых успехов генно-инженерных экспериментов. Биотехнология, в сущности, не что иное, как использование культур клеток бактерий, дрожжей, животных или растений, метаболизм и биосинтетические возможности которых обеспечивают выработку специфических веществ. Биотехнология на основе применения знаний и методов биохимии, генетики и химической техники дала возможность получения с помощью легко доступных, возобновляемых ресурсов тех веществ и которые важны для жизни и благосостояния.

    3. Экология – наука о взаимоотношениях живых организмов и среды их обитания. Природа, в которой обитает живой организм, является средой его обитания . Факторы среды, которые воздействуют на организм, называют экологическими факторами:

      абиотические факторы – факторы неживой природы (температура, свет, влажность);

      биотические факторы – взаимоотношения между особями в популяции и между популяциями в природном обществе;

      антропогенный фактор – деятельность человека, приводящая к изменению среды обитания живых организмов.

    Фотопериодизм – общее важное приспособление организмов. Так, весенние удлиняющиеся дни вызывают активную деятельность половых желез.

    В 1935 г. английский ботаник А.Тесли ввел понятие «экосистема »- исторически сложившиеся открытые, но целостные и устойчивые системы живых и неживых компонентов, имеющие односторонний поток энергии, внутренние и внешние круговороты веществ и обладающие способностью регулировать все эти процессы.

    В 1942 г. советский академик В.Н.Сукачев сформулировал понятие «биогеоценоз » - открытая природная система, состоящая из живых и неживых компонентов, занимающая территорию со сравнительно однородным растительным сообществом и характеризующаяся определенным потоком энергии, круговоротом веществ, движением и развитием.

    Лес, поле, луг – это экосистема. Но когда характеристика леса и его тип конкретизуется определенным растительным сообществом (ельник – черничник, сосняк – брусничник) - это биогеоценоз.

    Среда обитания человека представляет собой переплетение взаимодействующих естественных и антропогенных экологических факторов, набор которых различается в разных природно-географических и экономических регионах планеты.

    Между молекулами ДНК и РНК имеются три основных отличия.

      ДНК содержит сахар дезоксирибозу, РНК – рибозу.

      В молекуле ДНК нуклеотид, комплементарный (соответствующий) аденину, ‒ тимин, а в молекуле РНК – урацил.

      ДНК имеет форму двойной спирали, РНК ‒ одинарной. РНК, как правило, короче.

    6. Генетический код Что такое код

    Код – это правило, которое ставит каждому конкретному сообщению строго определенную комбинацию символов.

    Проще всего показать это с помощью какого-либо слова. Например, понятие жилища для одного человека или группы людей кодируется словом, состоящим из трех букв – «дом».

    Закодированную информацию легко хранить, обрабатывать, копировать, передавать.

    Генетический код

    Информация о последовательности аминокислот в белке кодируется с помощью языка нуклеотидов. В этом языке четыре буквы ‒ четыре азотистых основания ‒ аденин, тимин, гуанин и цитозин. С их помощью надо назвать 20 аминокислот. Если мы будем использовать слова, состоящие только из одной буквы, то сможет образовать только четыре слова – А, Т, Г и Ц. 4 = 4 1 . Этого, конечно, мало. Если наши слова будут состоять из двух букв, мы сможет образовать 16 слов: АТ, АГ, ГЦ и т.д. 16 = 4 2 . Этих слов тоже недостаточно. А вот если использовать слова по три буквы, то получится 4 3 = 64 слова. Их будет вполне достаточно, чтобы назвать 20 аминокислот. Даже получится, что им можно давать по два и больше имен. Например, у одного и то же животного два имени – «бегемот» и «гиппопотам».

    О том, что 20 аминокислот могут кодироваться нуклеотидами, объединенными в тройки, догадался Георгий Антонович Гамов, автор теории Большого взрыва.

    Каждая тройка нуклеотидов, кодирующая одну аминокислоту, называется кодоном, или триплетом.

    Кодон (триплет) – тройка нуклеотидов, кодирующая аминокислоту.

    «Словарь» для перевода с языка нуклеотидов на язык аминокислот называется генетическим кодом.

    Генетический код ‒ таблица соответствия кодонов аминокислотам.

    Она была составлена в 60-х годах XX века.

    Некоторые свойства генетического кода

    1. Каждая аминокислота кодируется более чем одним кодоном (от 2 до 6 кодонов на одну аминокислоту).

    2. Каждый кодон соответствует только одной аминокислоте.

    Как кодируется информация в молекуле днк

    В молекуле ДНК каждая цепь представляет собой последовательность нуклеотидов. Легче представить, что это определенная последовательность азотистых оснований – перекладин между цепочками ДНК. Но ведь это и определенная последовательность перекладин, разделенных на тройки, т.е. кодонов. Причем, если азотистые основания одной цепи ДНК, соединенные водородными связями с азотистыми основаниями другой цепи, комплементарны ‒ соответствуют друг другу, то такими же комплементарными будут и азотистые основания, разделенные на тройки, т.е. кодоны. Кодон, комплементарный другому кодону, называется антикодоном. Например, АГА комплементарен ТЦТ.

    Итак, на каждой цепи молекулы ДНК находится определенная последовательность кодонов. Но ведь каждый кодон соответствует только одной аминокислоте. Поэтому последовательность кодонов на одной из цепей ДНК однозначно определяет последовательность аминокислот. Следовательно, с помощью последовательности кодонов, расположенных на цепи ДНК, можно закодировать последовательность аминокислот в молекуле белка, иными словами, его структуру. Эта последовательность кодонов и есть ген.

    Ген – участок молекулы ДНК, служащий матрицей для синтеза одного белка.

    Просмотров